1 Reading expression data for genes and methylation data for corresponding promoters

I load:

2 Promoters loosing DNA methylation become more susceptible to “noisy” gene expression change

IMPORTANT NOTE: for none of the genes labeled in the plot the gene expression change is significant!

sessionInfo()
## R version 4.1.3 (2022-03-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=it_IT.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=it_IT.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=it_IT.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=it_IT.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] ggrepel_0.9.2     biomaRt_2.50.3    gridExtra_2.3     ggpubr_0.5.0     
## [5] purrr_0.3.5       data.table_1.14.6 reshape2_1.4.4    ggplot2_3.4.0    
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-7           bit64_4.0.5            filelock_1.0.2        
##  [4] progress_1.2.2         httr_1.4.4             GenomeInfoDb_1.30.1   
##  [7] tools_4.1.3            backports_1.4.1        bslib_0.4.1           
## [10] utf8_1.2.2             R6_2.5.1               DBI_1.1.3             
## [13] BiocGenerics_0.40.0    colorspace_2.0-3       withr_2.5.0           
## [16] tidyselect_1.2.0       prettyunits_1.1.1      bit_4.0.5             
## [19] curl_4.3.3             compiler_4.1.3         cli_3.4.1             
## [22] Biobase_2.54.0         xml2_1.3.3             labeling_0.4.2        
## [25] sass_0.4.2             scales_1.2.1           rappdirs_0.3.3        
## [28] stringr_1.4.1          digest_0.6.30          rmarkdown_2.18        
## [31] XVector_0.34.0         pkgconfig_2.0.3        htmltools_0.5.3       
## [34] highr_0.9              dbplyr_2.2.1           fastmap_1.1.0         
## [37] rlang_1.0.6            rstudioapi_0.14        RSQLite_2.2.18        
## [40] prettydoc_0.4.1        jquerylib_0.1.4        generics_0.1.3        
## [43] farver_2.1.1           jsonlite_1.8.3         dplyr_1.0.10          
## [46] car_3.1-1              RCurl_1.98-1.9         magrittr_2.0.3        
## [49] GenomeInfoDbData_1.2.7 Rcpp_1.0.9             munsell_0.5.0         
## [52] S4Vectors_0.32.4       fansi_1.0.3            abind_1.4-5           
## [55] lifecycle_1.0.3        stringi_1.7.8          yaml_2.3.6            
## [58] carData_3.0-5          zlibbioc_1.40.0        plyr_1.8.8            
## [61] BiocFileCache_2.2.1    grid_4.1.3             blob_1.2.3            
## [64] crayon_1.5.2           cowplot_1.1.1          Biostrings_2.62.0     
## [67] hms_1.1.2              KEGGREST_1.34.0        knitr_1.40            
## [70] pillar_1.8.1           ggsignif_0.6.4         codetools_0.2-18      
## [73] stats4_4.1.3           XML_3.99-0.12          glue_1.6.2            
## [76] evaluate_0.18          png_0.1-7              vctrs_0.5.1           
## [79] gtable_0.3.1           tidyr_1.2.1            assertthat_0.2.1      
## [82] cachem_1.0.6           xfun_0.35              broom_1.0.1           
## [85] rstatix_0.7.1          tibble_3.1.8           AnnotationDbi_1.56.2  
## [88] memoise_2.0.1          IRanges_2.28.0         ellipsis_0.3.2