1 Design of the experiment

  1. E12.5 placentae were dissected from 3 litters coming from crosses of a mother OgtY841A-het x OgtY841A-homo male.
  2. The head of the embryo was used to assign it to the 4 possible genotypes coming from this cross.
  3. Among the 4 genotypes, the het females represent the control for females, the wt males represent the control for males.
  4. 6 placentae for each genotype were sequenced, trying to have the 6 biological replicates coming from at least 2 different litters.
SRR sample genotype litter batch biol_rep tech_rep run library_layout read_length sex
none P1 F_HET 6 1 1 1 1 PAIRED - 40 F
none P2 F_HET 7 1 2 1 1 PAIRED - 40 F
none P3 F_HET 8 1 3 1 1 PAIRED - 40 F
none P13 F_HET 6 1 4 1 1 PAIRED - 40 F
none P15 F_HET 8 1 5 1 1 PAIRED - 40 F
none P24 F_HET 7 1 6 1 1 PAIRED - 40 F
none P4 F_HOMO 6 1 1 1 1 PAIRED - 40 F
none P5 F_HOMO 7 1 2 1 1 PAIRED - 40 F
none P6 F_HOMO 8 1 3 1 1 PAIRED - 40 F
none P16 F_HOMO 7 1 4 1 1 PAIRED - 40 F
none P17 F_HOMO 7 1 5 1 1 PAIRED - 40 F
none P18 F_HOMO 8 1 6 1 1 PAIRED - 40 F
none P7 M_HEMI 6 1 1 1 1 PAIRED - 40 M
none P8 M_HEMI 6 1 2 1 1 PAIRED - 40 M
none P9 M_HEMI 7 1 3 1 1 PAIRED - 40 M
none P19 M_HEMI 6 1 4 1 1 PAIRED - 40 M
none P20 M_HEMI 6 1 5 1 1 PAIRED - 40 M
none P21 M_HEMI 7 1 6 1 1 PAIRED - 40 M
none P10 M_WT 6 1 1 1 1 PAIRED - 40 M
none P11 M_WT 7 1 2 1 1 PAIRED - 40 M
none P12 M_WT 8 1 3 1 1 PAIRED - 40 M
none P14 M_WT 7 1 4 1 1 PAIRED - 40 M
none P22 M_WT 6 1 5 1 1 PAIRED - 40 M
none P23 M_WT 6 1 6 1 1 PAIRED - 40 M

2 Clustering

2.1 Heatmap for quality assessment

After applying, in order, log2(norm counts + 1), rlog and Variance Stabilizing Transformation, I plot heatmaps for top highly expressed genes to check for eventual big sample heterogeneity present in the dataset.

  • Sample P1 has a problem, I will remove it from the dataset.
  • rlog transformation is not appropriate with this dataset.

2.2 PCA

Clustering based on genotype does not appear in the PCA. log2 transformation makes the sex clustering more evident.

3 Differential Expression Analysis - all Female vs all Male samples

The threshold used for a dot to be colored in red in the MA-plots is: p-value adjusted < 0.05, to be labeled is color, baseMean > 10 and log2FC > 0.2.

Two plots with two different y-ranges are necessary for a complete picture.

4 Differential Expression Analysis - genotypes comparison

The threshold used for a dot to be colored in red in the MA-plots is: p-value adjusted < 0.05, to be labeled is color, baseMean > 10 and log2FC > 0.2.

sessionInfo()
## R version 4.1.3 (2022-03-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.6 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=it_IT.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=it_IT.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=it_IT.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=it_IT.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] enrichplot_1.14.2           org.Mm.eg.db_3.14.0        
##  [3] AnnotationDbi_1.56.2        clusterProfiler_4.2.2      
##  [5] data.table_1.14.6           gridExtra_2.3              
##  [7] gplots_3.1.3                ggpubr_0.5.0               
##  [9] pheatmap_1.0.12             vsn_3.62.0                 
## [11] reshape2_1.4.4              ggrepel_0.9.2              
## [13] ggplot2_3.4.0               tximport_1.22.0            
## [15] DESeq2_1.34.0               SummarizedExperiment_1.24.0
## [17] Biobase_2.54.0              MatrixGenerics_1.6.0       
## [19] matrixStats_0.62.0          GenomicRanges_1.46.1       
## [21] GenomeInfoDb_1.30.1         IRanges_2.28.0             
## [23] S4Vectors_0.32.4            BiocGenerics_0.40.0        
## 
## loaded via a namespace (and not attached):
##   [1] shadowtext_0.1.2       backports_1.4.1        fastmatch_1.1-3       
##   [4] plyr_1.8.8             igraph_1.3.5           lazyeval_0.2.2        
##   [7] splines_4.1.3          BiocParallel_1.28.3    digest_0.6.30         
##  [10] invgamma_1.1           yulab.utils_0.0.5      htmltools_0.5.3       
##  [13] GOSemSim_2.20.0        viridis_0.6.2          GO.db_3.14.0          
##  [16] SQUAREM_2021.1         fansi_1.0.3            magrittr_2.0.3        
##  [19] memoise_2.0.1          limma_3.50.3           Biostrings_2.62.0     
##  [22] annotate_1.72.0        graphlayouts_0.8.3     colorspace_2.0-3      
##  [25] blob_1.2.3             xfun_0.35              dplyr_1.0.10          
##  [28] crayon_1.5.2           RCurl_1.98-1.9         jsonlite_1.8.3        
##  [31] scatterpie_0.1.8       genefilter_1.76.0      ape_5.6-2             
##  [34] survival_3.2-13        glue_1.6.2             polyclip_1.10-4       
##  [37] gtable_0.3.1           zlibbioc_1.40.0        XVector_0.34.0        
##  [40] DelayedArray_0.20.0    car_3.1-1              abind_1.4-5           
##  [43] scales_1.2.1           DOSE_3.20.1            DBI_1.1.3             
##  [46] rstatix_0.7.1          Rcpp_1.0.9             viridisLite_0.4.1     
##  [49] xtable_1.8-4           tidytree_0.4.1         gridGraphics_0.5-1    
##  [52] bit_4.0.5              preprocessCore_1.56.0  truncnorm_1.0-8       
##  [55] httr_1.4.4             fgsea_1.20.0           RColorBrewer_1.1-3    
##  [58] pkgconfig_2.0.3        XML_3.99-0.12          farver_2.1.1          
##  [61] sass_0.4.2             locfit_1.5-9.6         utf8_1.2.2            
##  [64] labeling_0.4.2         ggplotify_0.1.0        tidyselect_1.2.0      
##  [67] rlang_1.0.6            munsell_0.5.0          tools_4.1.3           
##  [70] cachem_1.0.6           downloader_0.4         cli_3.4.1             
##  [73] generics_0.1.3         RSQLite_2.2.18         broom_1.0.1           
##  [76] evaluate_0.18          stringr_1.4.1          fastmap_1.1.0         
##  [79] yaml_2.3.6             ggtree_3.2.1           knitr_1.40            
##  [82] bit64_4.0.5            tidygraph_1.2.2        caTools_1.18.2        
##  [85] purrr_0.3.5            KEGGREST_1.34.0        ggraph_2.1.0          
##  [88] nlme_3.1-155           aplot_0.1.8            DO.db_2.9             
##  [91] compiler_4.1.3         rstudioapi_0.14        png_0.1-7             
##  [94] affyio_1.64.0          ggsignif_0.6.4         treeio_1.18.1         
##  [97] tibble_3.1.8           tweenr_2.0.2           geneplotter_1.72.0    
## [100] bslib_0.4.1            stringi_1.7.8          highr_0.9             
## [103] lattice_0.20-45        Matrix_1.5-3           vctrs_0.5.1           
## [106] pillar_1.8.1           lifecycle_1.0.3        BiocManager_1.30.22   
## [109] jquerylib_0.1.4        irlba_2.3.5.1          bitops_1.0-7          
## [112] patchwork_1.1.2        qvalue_2.26.0          R6_2.5.1              
## [115] affy_1.72.0            KernSmooth_2.23-20     codetools_0.2-18      
## [118] MASS_7.3-55            gtools_3.9.3           assertthat_0.2.1      
## [121] withr_2.5.0            GenomeInfoDbData_1.2.7 parallel_4.1.3        
## [124] grid_4.1.3             prettydoc_0.4.1        ggfun_0.0.8           
## [127] tidyr_1.2.1            rmarkdown_2.18         ashr_2.2-54           
## [130] carData_3.0-5          mixsqp_0.3-48          ggforce_0.4.1