Reading:
DEGs found in DE_analysis.Rmd
markers of placental clusters found in Marsh and Blelloch, elife 2020. Number of markers per cluster:
blood decidual_stroma endothelial fetal_mesenchyme 1160 521 1797 2513 GC JZP1 JZP2 LaTP 466 452 276 810 LaTP2 S_TGC S_TGCPrecursor SpT 468 629 335 566
SpTPrecursor SynTI SynTII SynTIIPrecursor 316 766 523 541 SynTIPrecursor 324
After reducing table in such a way that when a gene is marker for more than one cluster, the cluster with higher log2FC is selected i.e. markers are unique for a cluster:
blood decidual_stroma endothelial fetal_mesenchyme
570 277 461 823
GC JZP1 JZP2 LaTP
203 89 44 392
LaTP2 S_TGC S_TGCPrecursor SpT
60 341 21 330
SpTPrecursor SynTI SynTII SynTIIPrecursor
33 451 241 122
SynTIPrecursor 84
The list of unique markers will be used for all plots.
1 GSEA using placental markers
2 Pseudotime using placental markers expression
Expression of markers from cell types of the labyrinth is more predictive of the genotype than junctional zone’s ones. One reason could be the more variable presence of JZ tissue in the single dissected placentae.
3 Pseudotime using DEGs expression
sessionInfo()
## R version 4.1.3 (2022-03-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.6 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=it_IT.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=it_IT.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=it_IT.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=it_IT.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] enrichplot_1.14.2 org.Mm.eg.db_3.14.0
## [3] AnnotationDbi_1.56.2 clusterProfiler_4.2.2
## [5] data.table_1.14.6 gridExtra_2.3
## [7] gplots_3.1.3 ggpubr_0.5.0
## [9] pheatmap_1.0.12 reshape2_1.4.4
## [11] ggrepel_0.9.2 ggplot2_3.4.0
## [13] DESeq2_1.34.0 SummarizedExperiment_1.24.0
## [15] Biobase_2.54.0 MatrixGenerics_1.6.0
## [17] matrixStats_0.62.0 GenomicRanges_1.46.1
## [19] GenomeInfoDb_1.30.1 IRanges_2.28.0
## [21] S4Vectors_0.32.4 BiocGenerics_0.40.0
##
## loaded via a namespace (and not attached):
## [1] shadowtext_0.1.2 backports_1.4.1 fastmatch_1.1-3
## [4] plyr_1.8.8 igraph_1.3.5 lazyeval_0.2.2
## [7] splines_4.1.3 BiocParallel_1.28.3 digest_0.6.30
## [10] yulab.utils_0.0.5 htmltools_0.5.3 GOSemSim_2.20.0
## [13] viridis_0.6.2 GO.db_3.14.0 fansi_1.0.3
## [16] magrittr_2.0.3 memoise_2.0.1 Biostrings_2.62.0
## [19] annotate_1.72.0 graphlayouts_0.8.3 colorspace_2.0-3
## [22] blob_1.2.3 xfun_0.35 dplyr_1.0.10
## [25] crayon_1.5.2 RCurl_1.98-1.9 jsonlite_1.8.3
## [28] scatterpie_0.1.8 genefilter_1.76.0 survival_3.2-13
## [31] ape_5.6-2 glue_1.6.2 polyclip_1.10-4
## [34] gtable_0.3.1 zlibbioc_1.40.0 XVector_0.34.0
## [37] DelayedArray_0.20.0 car_3.1-1 abind_1.4-5
## [40] scales_1.2.1 DOSE_3.20.1 DBI_1.1.3
## [43] rstatix_0.7.1 Rcpp_1.0.9 viridisLite_0.4.1
## [46] xtable_1.8-4 gridGraphics_0.5-1 tidytree_0.4.1
## [49] bit_4.0.5 httr_1.4.4 fgsea_1.20.0
## [52] RColorBrewer_1.1-3 pkgconfig_2.0.3 XML_3.99-0.12
## [55] farver_2.1.1 sass_0.4.2 locfit_1.5-9.6
## [58] utf8_1.2.2 labeling_0.4.2 ggplotify_0.1.0
## [61] tidyselect_1.2.0 rlang_1.0.6 munsell_0.5.0
## [64] tools_4.1.3 cachem_1.0.6 downloader_0.4
## [67] cli_3.4.1 generics_0.1.3 RSQLite_2.2.18
## [70] broom_1.0.1 evaluate_0.18 stringr_1.4.1
## [73] fastmap_1.1.0 yaml_2.3.6 ggtree_3.2.1
## [76] knitr_1.40 bit64_4.0.5 tidygraph_1.2.2
## [79] caTools_1.18.2 purrr_0.3.5 KEGGREST_1.34.0
## [82] ggraph_2.1.0 nlme_3.1-155 aplot_0.1.8
## [85] DO.db_2.9 compiler_4.1.3 rstudioapi_0.14
## [88] png_0.1-7 ggsignif_0.6.4 treeio_1.18.1
## [91] tibble_3.1.8 tweenr_2.0.2 geneplotter_1.72.0
## [94] bslib_0.4.1 stringi_1.7.8 highr_0.9
## [97] lattice_0.20-45 Matrix_1.5-3 vctrs_0.5.1
## [100] pillar_1.8.1 lifecycle_1.0.3 jquerylib_0.1.4
## [103] bitops_1.0-7 patchwork_1.1.2 qvalue_2.26.0
## [106] R6_2.5.1 KernSmooth_2.23-20 codetools_0.2-18
## [109] MASS_7.3-55 gtools_3.9.3 assertthat_0.2.1
## [112] withr_2.5.0 GenomeInfoDbData_1.2.7 parallel_4.1.3
## [115] grid_4.1.3 prettydoc_0.4.1 ggfun_0.0.8
## [118] tidyr_1.2.1 rmarkdown_2.18 carData_3.0-5
## [121] ggforce_0.4.1